NSSD

(NAND Flash-based Solid State Disk)

Standard Type Product Data sheet Version 1.41 Mar 2007

INFORMATION IN THIS DOCUMENT IS PROVIDED IN RELATION TO SAMSUNG PRODUCTS, AND IS SUBJECT TO CHANGE WITHOUT NOTICE.

NOTHING IN THIS DOCUMENT SHALL BE CONSTRUED AS GRANTING ANY LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE,

TO ANY INTELLECTUAL PROPERTY RIGHTS IN SAMSUNG PRODUCTS OR TECHNOLOGY. ALL INFORMATION IN THIS DOCUMENT IS PROVIDED

ON AS "AS IS" BASIS WITHOUT GUARANTEE OR WARRANTY OF ANY KIND.

1. For updates or additional information about Samsung products, contact your nearest Samsung office.

2. Samsung products are not intended for use in life support, critical care, medical, safety equipment, or similar applications where Product failure could result in loss of life or personal or physical harm, or any military or defense application, or any governmental procurement to which special terms or provisions may apply.

* Samsung Electronics reserves the right to change products or specification without notice.

Document Title

SAMSUNG NAND Flash-based Solid State Disk

Revision History

Revision No	<u>History</u>	Draft Date	<u>Remark</u>
0.0	Initial issue	Sep.16.2005	Preliminary
0.1	1.8" 32GB Physical Dimension , Identify Drive Data was added	Oct.04.2005	Preliminary
0.2	2.5" 4/8/16/32GB Physical Dimension was added	Oct.21.2005	Preliminary
0.3	1.8" 4/8/16GB Physical Dimension was added	Nov.25.2005	Preliminary
0.4	1.8" Physical Dimension(Hole Location) was corrected	Mar.03.2006	Preliminary
0.5	Decreased Power consumption(Active,Idle,Standby)	May.09.2006	Preliminary
1.0	Supporting SECURITY FEATURE Set Supporting SMART FEATURE Set Supporting HOST PROTECTED AREA FEATURE Set Identify Device Data was updated. Software/Hardware Reset State Diagram was added	Aug.23.2006	Final
1.1	2.5" physical dimension was changed.(page 6,9) (101x70x9.3 => $100.2 \pm 0.3x70 \pm 0.3x9.5 \pm 0.3mm$) 1.8" connector guide hole size was added.(page 7,8) Misprint was modified.(page 54) (In graph, R/ \overline{B} -> BSY)	Sep.27.2006	Final
1.11	Misprint was modified(page 7,8) (In guide hole size1.4 ^{+1.0} -> 1.4 ^{+0.1}) (Drawings of width & side view part were corrected)	Oct.19.2006	Final
1.12	Information of Screw's position was added in 1.8" physical dimension.	Nov.07.2006	Final
1.2	 1.8" 4/8/16GB Physical Dimension was changed as same with 32GB. 1.8" 4/8GB was added in product line-up Tolerance size was indicated(page 7) 		Final
1.3	1.8" part number of product line-up(page62) was changed Pin 32 description of 1.8" was added (note in page 10) Pin 32, 42 description of 2.5" was added (note in page 11)	Jan.09.2007	Final
1.31	Sutained Data Read/Write was updated(page6) Maxium weight of 1.8" 32GB was added(page6) Guide hole size was updated from 2.00 -> 2.00 +-0.15(page7) System performance table was updated(page9)	Jan.19.2007	Final
1.4	2.5" Physical Dimension in detail size was updated(page8) Voltage information of 2.5" was added(page13)	Feb.28.2007	Final
1.41	Maxium weight of 2.5" 16/32GB was added(page6) Misprint was modified(page7) (In drawing, 78.50->78.60 \pm 0.5, 54.00->53.80 \pm 0.5)	Mar.08.2007	Final

The attached data sheets are prepared and approved by SAMSUNG Electronics. And SAMSUNG Electronics has the right to change all the specifications in data sheets. SAMSUNG Electronics will evaluate and reply to any dear customer's requests and questions on the parameters of this device. If dear customer has any questions, please call or fax to Memory Product Planning Team, or contact the SAMSUNG branch office near your office

1. General Description	6
2. Physical Specifications	7
2.1 1.8" Physical Dimensions(4/8/16/32GB)	7
2.2 2.5" Physical Dimensions	8
3. Product Specifications	9
3.1 System Interface and Configuration	9
3.2 System Performance	9
3.3 System Power Consumption	9
3.4 System Reliability	9
3.5 Environmental Specifications	9
4. Electrical Specifications	10
4.1 1.8" Type	10
4.1.1 1.8" Pin Locations	10
4.1.2 1.8" Pin Assignments	10
4.2 2.5" Type	11
4.2.1 2.5" Pin Locations	11
4.2.2 2.5" Pin Assignments	11
4.3 Jumper Settings	11
4.4 Signal Descriptions	12
4.5 DC Characteristics	13
4.5.1 Absolute Maximum Ratings	13
4.5.2 Recommended Operating Conditions	13
4.5.3 Electrical Characteristics	13
4.6 AC Characteristics	14
4.6.1 Register Transfers	14
4.6.2 PIO Data Transfers	16
4.6.3 Multiword DMA Data Transfer	18
4.6.3.1 Initiating a Multiword DMA data burst	19
4.6.3.2 Sustaining a Multiword DMA data burst	20
4.6.3.3 Device terminating a Multiword DMA data burst	21
4.6.3.4 Host terminating a Multiword DMA data burst	22
4.6.4 Ultra DMA Data Transfer	23
4.6.4.1 Initiating an Ultra DMA data-in burst	24
4.6.4.2 Sustained Ultra DMA data-in burst	25
4.6.4.3 Host pausing an Ultra DMA data-in burst	26
4.6.4.4 Device terminating an Ultra DMA data-in burst	27
4.6.4.5 Host terminating an Ultra DMA data-in burst	28
4.6.4.6 Initiating an Ultra DMA data-out burst	29
4.6.4.7 Sustained Ultra DMA data-out burst	30
4.6.4.8 Device pausing an Ultra DMA data-out burst	31
4.6.4.9 Host terminating an Ultra DMA data-out burst	32
4.6.4.10 Device terminating an Ultra DMA data-out burst	33
5. ATA Registers	34
5.1 I/O Register Descriptions	34
5.2 Alternate Status Register	34
5.2.1 Address	34
5.2.2 Direction	34
5.2.3 Access Restrictions	34
5.2.4. Effect	34
5.2.5 Functional Description	34
5.3 Command Register	35
5.3.1 Address	35
5.3.2 Direction	35
5.3.3 Access Restrictions	35
5.3.4 Effect	35
5.3.5 Functional description	35

TABLE OF CONTENTS

5.3.6 Field/bit description	35
5.4 Cylinder Hign Register	36
5.4.1 Address	36
5.4.2 Direction	36
5.4.3 Access Restrictions	36
5.4.4 Effect	36
5.4.5 Functional description	36
5.5 Cylinder Low Register	37
5.5.1 Address	37
5.5.2 Direction	37
5.5.3 Access Restrictions	37
5.5.4 Effect	37
5.5.5 Functional description	37
5.6 Data port	37
5.6.1 Address	37
5.6.2 Direction	37
5.6.3 Access Restrictions	38
5.6.4 Effect	38
5.6.5 Functional description	38
5.6.6 Field/bit description	38
5.7 Data Register	39
5.7.1 Address	39
5.7.2 Direction	39
5.7.3 Access Restrictions	39
5.7.4 Effect	39
5.7.5 Functional description	39
5.7.6 Field/bit description	39
5.8 Device Control Register	40
5.8.1 Address	40
5.8.2 Direction	40
5.8.3 Access Restrictions	40
5.8.4 Effect	40
5.8.5 Functional description	40
5.8.6 Field/bit description	40
5.9 Device/Head Register	41
5.9.1 Address	41
5.9.2 Direction	41
5.9.3 ACCess Restrictions	41
5.9.4 Effect	41
5.9.5 Functional description	41
5.9.6 Field/bit description	41
	42
5.10.1 Address	42
5.10.2 Direction	42
5.10.3 A Effort	42
5.10.4 Elliptic	42
5.10.5 Field/hit description	42
	42
5.11 Address	43
5.11.2 Direction	43
5 11 3 Access Restrictions	40
5 11 4 Effect	40 ⊿3
5.11.5 Functional description	40
5.12 Sector Count Register	43
5.12.1 Address	44
5.12.1 Audition	44
5.12.3 Access Restrictions	44
5.12.4 Effect	44
0.12.7 LIIUU	44

TABLE OF CONTENTS

5.12.5 Functional description	44
5.13 Sector Number Register	45
5.13.1 Address	45
5.13.2 Direction	45
5.13.3 Access Restrictions	45
5.13.4 Effect	45
5.13.5 Functional description	45
5.14 Status Register	46
5.14.1 Address	46
5.14.2 Direction	46
5.14.3 Access Restrictions	46
5.14.4 Effect	46
5.14.5 Functional description	46
5.14.6 Field/bit description	46
5.14.6.1 BSY(Busy)	47
5.14.6.2 DRDY(Device ready)	48
5.14.6.3 Command dependent	48
5.14.6.4 DRQ(Data request)	48
5.14.6.5 Obsolete bits	48
5.14.6.6 ERR(Error)	49
6. Command Descriptions	50
6.1 Supporting ATA Command Set	50
6.2 Security Feature Set	51
6.2.1 Securtity mode default setting	51
6.2.2 Initial setting of the user password	51
6.2.3 Security mode operation from power-on	51
6.2.4 Password lost	51
6.3 SMART Feature Set	52
6.3.1 Sub Command Set	52
6.3.2 SMART Data Structure(READ DATA(Doh))	52
6.3.3 Threshold Sector Size	53
6.4 R/B Status in SLEEP command	53
6.5 SET FEATURES	54
6.5.1 SET FEATURES Register Value	54
6.6 SET MAX	55
6.6.1 SET MAX FEATURES Register Value	55
6.7 Identify Device Data	56
6.8 Hardware Reset State Diagram	58
6.9 Software Reset State Diagram	59
7. Ordering Information	61
8. Product Line-up	62

TABLE OF CONTENTS

1. General Description

The NSSD(Nand Flash-based Solid State Disk) of Samsung Electronics is fully consist of semiconductor device and using NAND Flash Memory which has a high reliability and a high technology for a storage media.

As the NSSD doesn't have a moving parts such as platter(disk) and head media, it gives a good solution in a sub. note PC and Tablet PC for a storage device with a high performance and a power consumption and a small form factor.

Also it gives rugged features in industrial PC with an extreme environment and an increased MTBF.

For an easy adoption, the NSSD has a same host interface with HDD and has a same physical dimension.

Density

- 1.8" Type : 4GB,8GB,16GB,32GB are available
- 2.5" Type : 4GB,8GB,16GB,32GB are available

•Form Factor

- 1.8" Type (78.60 \pm 0.5x53.80 \pm 0.5x8.0 \pm 0.3mm) : 4 / 8 / 16 / 32GB

-2.5" Type (100.2 \pm 0.3 x70 \pm 0.3x9.5 \pm 0.3mm): 4/8/16/32GB

•Host interface

- PIO Mode 0 to 4.
- Multiword DMA
- Up to ATA5 UDMA Mode4 (66MHz)

Performance

- Host Interface : Max 66MB/s
- Sustained Data Read : Max 53MB/s *
- Sustained Data Write : Max 30MB/s *

(* Sandra 2007)

•NSSD Functional Block Diagram

Power consumption

- Active : Typical 200mA
- Idle : Typical 20mA
- Standby : Typical 20mA

•Temperature

- Operating : -25'C ~ 85'C

Shock

- Operating : 1500G, duration 0.5ms, Half Sine Wave
- Vibration : 20G Peak, 10~2000Hz,(12Cycle/Axis)x3 Axis

•MTBF

- 1,000,000 Hours

Maxium Weight

- 45g(1.8" 32GB)
- 52g(2.5" 16GB) - 54g(2.5" 32GB)
- 549(2.5 52GE

2.2 2.5" Physical Dimensions

***** Tolerance size : ± 0.3 mm

3. Product Specifications

3.1 System Interface and Configuration

• PIO 0~4 mode,

• Up to ATA5 and UDMA mode4(Ultra DMA66)

• Fully compatible with ATA5 Specification

3.2 System Performance

(Sandra 2007, 32GB)

Read / Write	Performance(MB/s)
Random Read Sector	Max 53
Random Write Sector	Max 12
Sequential Read Sector	Max 53
Sequential Write Sector	Max 30

3.3 System Power Consumption

(32GB)

Current	Typical(mA)
Active	200
ldle	20
Standby	20

3.4 System Reliability

MTBF	1,000,000 Hours

3.5 Environmental Specifications

Features	Operating	Non-Operating	
Temperature	-25'C ~ 85'C	-40'C ~ 85'C	
Humidity	0'C to 55'C / 90~98% RH, 10cycles		
Vibration	20G Peak, 10 ~ 2000Hz, (12cycle / Axis) x3 Axis		
Shock	1500G, duration 0.5ms, Half Sine Wave		

4. Electrical Specification

4.1 1.8" Type

4.1.1 1.8" Pin Locations

The following diagram identifies the Pin Locations of the Samsung NSSD 1.8" Drive.

4.1.2 1.8" Pin Assignments

PIN	NAME	PIN	NAME	PIN	NAME
А	NC	12	D12	29	DMACK
В	NC	13	D2	30	GND
С	NC	14	D13	31	INTRQ
D	NC	15	D1	32	Obsolete(See note)
E	NC	16	D14	33	A1
F	NC	17	D0	34	PDIAG
1	RESET	18	D15	35	A0
2	GND	19	GND	36	A2
3	D7	20	KEY-PIN	37	CS0
4	D8	21	DMARQ	38	CS1
5	D6	22	GND	39	DASP
6	D9	23	DIOW STOP	40	GND
7	D5	24	GND	41	VDD
8	D10	25	DIOR HDMARDY HSTROBE	42	NC
9	D4	26	GND	43	GND
10	D11	27	IORDY DDMARDY DSTROBE	44	NC
11	D3	28	CSEL		

NOTE:

CSEL(pin28) is not connected, but it remains for the future use.

1,8" NSSD can be used a Master drive only in primary or secondary (can't configure with slave drive)

Pin 32 was defined as IOCS16 in ATA2, ANSI X3.279-1996

4.2 2.5" Type

4.2.1 2.5" Pin Locations

The following diagram identifies the Pin Locations of the Samsung NSSD 2.5" Drive.

4.2.2 2.5" Pin Assignments

PIN	NAME	PIN	NAME	PIN	NAME
1	RESET	16	D14	31	INTRQ
2	GND	17	D0	32	Obsolete(See note)
3	D7	18	D15	33	A1
4	D8	19	GND	34	PDIAG
5	D6	20	KEY	35	A0
6	D9	21	DMARQ	36	A2
7	D5	22	GND	37	CS0
8	D10	23	DIOW	38	CS1
9	D4	24	GND	39	DASP
10	D11	25	DIOR	40	GND
11	D3	26	GND	41	VDD
12	D12	27	IORDY	42	VDD(See note)
13	D2	28	CSEL	43	GND
14	D13	29	DMACK	44	NC
15	D1	30	GND		

NOTE:

Pin 32 was defined as IOCS16 in ATA2, ANSI X3.279-1996 Pin 42 is meaningless, because there is no motor in NSSD

4.3 Jumper Settings

The following diagram defines the Samsung NSSD 2.5" drive jumper settings.

4.4 Signal Descriptions

Signal name	Pin NO	Туре	Description
A2 - A0	36,33,35	I	ADDRESS INPUTS: The Address signal are asserted by the host to access the task register in the device.
CS0, CS1	37,38	Ι	CHIP SELECTS: These are the chip select signals used to select the control block registers.
CSEL	28	I	CABLE SELECT: This internally pulled up signal is used to configure this device as a Master or a Slave when the jumper configuration is in CSEL mode. When this pin is grounded by the host, this device is configured as a Master. When this pin is open, this device is configured as a slave.
D15 - D0	18,16,14,12,10,8,6,4,3,5,7, 9,11,13,15,17	I/O	DATA INPUTS/OUTPUTS: This is 8 or 16 bit bi-directional inter- face between the host and device. The lower 8 bits are used for 8 bit register transfers.
DMACK	29	I	DMA ACKNOWLEDGE: This signal is used by the host in response to DMARQ to initiate DMA transfers. The DMARQ/DMACK handshake is used to provide flow control during the transfer. When DMACK is asserted, CS0 ans CS1 shall not be asserted and transfers shall be 16bits wide.
DASP	39	I/O	DISK ACTIVE/SLAVE PRESENT: This open drain output signal is asserted low any time the drive is active. In a master/slave to inform the master a slave is present.
DMARQ	21	0	DMA REQUEST: This signal is used for DMA transfers between the host and device. DMARQ shall be asserted by the device when the device is ready to transfer data to/from the host. The direction of data transfer is controller by IORD and IOWR. This signal is used in a handshake manner with DMACK, i.e the device shall wait until the host asserts DMACK before negating DMARQ, and re-assert DMARQ if there is more data to transfer. The DMARQ/ DMACK handshake is used to provide flow control during the transfer.
GND	2,19,22,24,26,30,40,43	-	GROUND: Device Ground.
INTRQ	31	0	INTERRUPT REQUEST: This signal is an active high interrupt request to the host.
IORDY	27	Ι	I/O CHANNEL READY: The signal is negated to extend the host transfer cycle of any host register access.
IORD	25	I	DEVICE I/O READ: This is the read strobe signal from the host. The falling edge of IORD enables data from the device onto the data bus. The rising edge of IORD latches data at the host. The host shall not act on the data until it is latched.
IOWR	23	Ι	DEVICE I/O WRITE: This is the write strobe signal from the host. The rising edge of IOWR# latches data from the data bit signals. The device will not act on the data until it is latched.
KEY	20	-	KEY: Peserved for the Connector Key.
PDIAG	34	I/O	PASS DIAGNOSTIC: This open drain signal is asserted by the Slave to indicate to the Master that it has passed its diagnostics.
RESET	1	Ι	DEVICE RESET: Active Low. When Active, this sets all internal registers to their default state. This signal shall be held asserted until at least 25us after power has been stabilized during the device power on.
VCC	41,42	-	DEVICE POWER SUPPLY: Device Power 3.3/5V

4.5 DC Characteristics

4.5.1 Absolute Maximum Ratings

Characteristics	Symbol		Rating	Unit
	V _{DD}	1.8"(3.3V)	-0.3 to 4.6	V
DC Supply vollage		2.5"(5.0V)	-0.3 to 6.5	
Input/Output Voltage	V _{IN} /V _{OUT}		3.8	V
DC Input Current	I _{IN}		+/- 200	mA
Storage Temperature	T _{STG}		-40 to 85	°C

4.5.2 Recommended Operating Conditions

Characteristics	Sym	nbol	Rating	Unit	
DC Supply Voltage	Vaa	1.8"(3.3V)	3.0 to 3.6	V	
DC Supply voltage	•∪∪	2.5"(5.0V)	4.5 to 5.5		
Input/Output Voltage	V _{IN} /\	/ _{OUT}	3.0 to 3.6	V	
Operating Temperature	Τ _Ο	PR	-25 to 85	°C	

4.5.3 Electrical Characteristics - Normal I/O

Vdd = 3.0 to 3.6(V), Ta = 25(°C), Vext = 5V \pm 0.25V

Characteristics	Symbol	Test Condition		Min	Тур	Max	Unit
Input High Current	Ι _{ΙΗ}	V _{IN} = V _{DD} Pull - Down	Normal Down	-10 10	-	10 60	uA uA
Input Low Current	I _{IL}	V _{IN} = V _{SS} Pull - Up	Normal Up	-10 -60	-	10 -10	uA uA
Input High Voltage	V _{IH}	CMOS		2.0	-	-	V
Input Low Voltage	V _{IL}	CN	IOS	-	-	0.8	V
Output High Voltage	V _{OH}	6mA Buffer, I _{OH} = -6mA		2.4	-	-	V
Output Low Voltage	V _{OL}	6mA Buffer, I _{OL} = 6mA		-	-	0.4	V
Tri-state Output Leakage Current	I _{OZ}	V _{OUT} = V	_{DD} or V _{SS}	-10	-	10	uA

NOTE:

* Schmitt Trigger test condition : V_{DD} = 3.0 to 3.6(V), Ta = 25(°C)

Characteristic:

These DC parameters guarantee the I/O cell characteristic at the static state only, not at the dynamic state.

4.6 AC Characteristics

4.6.1 Register Transfers

Figure 1 defines the relationships between the interface signals for register transfers. Peripherals reporting support for PIO mode 3 or 4 shall power-up in a PIO mode 0,1, or 2.

For PIO modes 3 and above, the minimum value of t_0 is specified by word 68 in the IDENTIFY DEVICE parameter list. Table 1 defines the minimum value that shall be placed in word 68.

Both hosts and devices shall support IORDY when PIO mode 3 or 4 are the currently selected mode of operation.

NOTE:

- 1. Device address consists of signals CS0-, CS1- and DA(2:0)
- 2. Data consists of DD(7:0)

 The negation of IORDY by the device is used to extend the register transfer cycle. The determination of whether the cycle is to be extended is made by the host after t_A from the assertion of DIOR- or DIOW-. The assertion and negation of IORDY are described in the following three cases:
 3-1. Device never negates IORDY, devices keeps IORDY released: no wait is generated.

- 3-2. Device negates IORDY before t_A , but causes IORDY to be asserted before t_A .
 - IORDY is released prior to negation and may be asserted for no more than 5ns before release: no wait generated.
- 3-3. Device negates IORDY before t_A. IORDY is released prior to negation and may be asserted for no more than 5ns before release: wait generated. The cycle completes after IORDY is reasserted. For cycles where a wait is generated and DIOR- is asserted, the device shall place read data on DD(7:0) for t_{RD} before asserting IORDY.
- 4. DMACK- shall remain negated during a register transfer.

	Register transfer timing parameters	Mode Ons	Mode 1ns	Mode 2ns	Mode 3ns	Mode 4ns	Note	
t ₀	Cycle time	min	600	383	330	180	120	1,4,5
t ₁	Address valid to DIOR-/DIOW- setup	min	70	50	30	30	25	
t ₂	DIOR-/DIOW- pulse width 8bit	min	290	290	290	80	70	1
t _{2i}	DIOR-/DIOW- recovery time	min	-	-	-	70	25	1
t ₃	DIOW- data setup	min	60	45	30	30	20	
t ₄	DIOW- data hold	min	30	20	15	10	10	
t ₅	DIOR- data setup	min	50	35	20	20	20	
t ₆	DIOR- data hold	min	5	5	5	5	5	
t _{6Z}	DIOR- data tristate	max	30	30	30	30	30	2
t ₉	DIOR-/DIOW- to address valid hold	min	20	15	10	10	10	
t _{RD}	Read Data Valid to IORDY active (if IORDY initially low after t _A)	min	0	0	0	0	0	
t _A	IORDY setup time		35	35	35	35	35	3
t _B	IORDY pulse width	max	1250	1250	1250	1250	1250	
t _C	IORDY assertion to release	max	5	5	5	5	5	

Table 1 - Register transfer to/from device

NOTE:

1. t₀ is the minimum total cycle time, t₂ is the minimum DIOR-/DIOW- assertion time, and A host implementation shall lengthen t₂ and/or t_{2i} to ensure that t₀ is equal to or greater than the value reported in the devices INDENTIFY DEVICE data. A device implementation shall support any legal host implementation.

2. This parameter specifies the time from the negation edge of DIOR- to the time that the data bus is released by the device.

3. The delay from the activation of DIOR- or DIOW- until the state of IORDY is first sampled. If IORDY is inactive then the host shall wait until IORDY negated at the t_A after the activation of DIOR- or DIOW-, then t₅ shall be met and t_{RD} is not applicable. If the device is driving IORDY negated at the time t_A after the activation of DIOR- or DIOW-, then t_{RD} shall be met and t₅ is not applicable.

4. ATA/ATAPI standards prior to ATA/ATAPI-5 inadvertently specified an incorrect value for mode2 time to by utilizing the 16-bit PIO value.

5. Mode shall be selected no faster than the highest mode supported by the slowest device.

4.6.2 PIO Data Transfers

Figure 2 defines the relationships between the interface signals for PIO data transfers. Peripherals reporting support for PIO mode 3 or 4 shall power-up in a PIO mode 0,1, or 2.

For PIO modes 3 and above, the minimum value of t_0 is specified by word 68 in the IDENTIFY DEVICE parameter list. Table 2 defines the minimum value that shall be placed in word 68.

IORDY shall be supported when PIO mode 3 or 4 are the current mode of operation.

NOTE:

- 1. Device address consists of signals CS0-, CS1- and DA(2:0)
- 2. Data consists of DD(15:0) for all devices except devices implementing the CFA feature set when 8-bit transfers is enabled. In that case, data consists of DD(7:0)

 The negation of IORDY by the device is used to extend the PIO cycle. The determination of whether the cycle is to be extended is made by the host after t_A from the assertion of DIOR- or DIOW-. The assertion and negation of IORDY are described in the following three cases: 3-1. Device never negates IORDY, devices keeps IORDY released: no wait is generated.

3-2. Device negates IORDY before t_A , but causes IORDY to be asserted before t_A .

IORDY is released prior to negation and may be asserted for no more than 5ns before release: no wait generated.

3-3. Device negates IORDY before t_A. IORDY is released prior to negation and may be asserted for no more than 5ns before release: wait generated. The cycle completes after IORDY is reasserted. For cycles where a wait is generated and DIOR- is asserted, the device shall place read data on DD(7:0) for t_{RD} before asserting IORDY.

4. DMACK- shall be negated during a PIO data transfer.

	PIO timing parameters	Mode Ons	Mode 1ns	Mode 2ns	Mode 3ns	Mode 4ns	Note	
t ₀	Cycle time	min	600	383	240	180	120	1,4
t ₁	Address valid to DIOR-/DIOW- setup	min	70	50	30	30	25	
t ₂	DIOR-/DIOW-	min	165	125	100	80	70	1
t _{2i}	DIOR-/DIOW- recovery time	min	-	-	-	70	25	1
t ₃	DIOW- data setup	min	60	45	30	30	20	
t ₄	DIOW- data hold	min	30	20	15	10	10	
t ₅	t ₅ DIOR- data setup		50	35	20	20	20	
t ₆	DIOR- data hold	min	5	5	5	5	5	
t _{6Z}	DIOR- data tristate	max	30	30	30	30	30	2
t ₉	DIOR-/DIOW- to address valid hold	min	20	15	10	10	10	
t _{RD}	Read Data Valid to IORDY active (if IORDY initially low after t_A)	min	0	0	0	0	0	
t _A	IORDY setup time		35	35	35	35	35	3
t _B	IORDY pulse width	max	1250	1250	1250	1250	1250	
t _C	IORDY assertion to release	max	5	5	5	5	5	

Table 2 - PIO data transfer to/from device

NOTE:

1. t_0 is the minimum total cycle time, t_2 is the minimum DIOR-/DIOW- assertion time, and t_{21} is the minimum DIOR-/DIOW- negation time. A host implementation shall lengthen t_2 and/or t_{2i} to ensure that t_0 is equal to or greater than the value reported in the devices IDENTIFY DEVICE data. A device implementation shall support any legal host implementation.

2. This parameter specifies the time from the negation edge of DIOR- to the time that the data bus is released by the device.

3. The delay from the activation of DIOR- or DIOW- until the state of IORDY is first sampled. If IORDY is inactive then the host shall wait until IORDY is active before the PIO cycle is completed. If the device is not driving IORDY negated at the t_A after the activation of DIOR- or DIOW-, then t₅ shall be met and t_{RD} is not applicable. If the device is driving IORDY negated at the time t_A after the activation of DIOR- or DIOW-, then t₅ shall be met and t₅ is not applicable.

4. Mode may be selected at the highest mode for the device if CS(1:0) and AD(2:0) do not change between read or write cycles or selected at the highest mode supported by the slowest device if CS(1:0) or AD(2:0) do change between read or write cycles.

4.6.3 Multiword DMA Data Transfers

Figure 3 through Figure 6 define the timing associated with Multiword DMA transfers.

For Multiword DMA modes 1 and above, the minimum value of t_0 is specified by word 65 in the IDENTIFY DEVICE parameter list. Table 3 defines the minimum value that shall be placed in word 65.

Devices shall power-up with mode 0 as the default Multiword DMA mode.

Table 3 - Multiword DMA data transfer

	Multiword DMA timing parameters		Mode 0ns	Mode 1ns	Mode 2ns	Note
t ₀	Cycle time	min	480	150	120	see note
t _D	DIOR-/DIOW- asserted pulse width	min	215	80	70	see note
t _E	DIOR- data access	max	150	60	50	
t _F	DIOR- data hold	min	5	5	5	
t _G	DIOR-/DIOW-data setup	min	100	30	20	
t _H	DIOW- data hold	min	20	15	10	
tl	DMACK to DIOR-/DIOW- data setup	min	0	0	0	
tj	DIOR-/DIOW- to DMACK hold	min	20	5	5	
t _{KR}	DIOR- negated pulse width	min	50	50	25	see note
t _{KW}	DIOW- negated pulse width	min	215	50	25	see note
t _{LR}	DIOR- to DMARQ delay	max	120	40	35	
t _{LVV}	DIOW- to DMARQ delay	max	40	40	35	
t _M	CS(1:0) valid to DIOR-/DIOW-	min	50	30	25	
t _N	CS(1:0) hold	min	15	10	10	
tz	DMACK- to read data released	max	20	25	25	

NOTE:

> t_0 is the minimum total cycle time, t_D is the minimum DIOR-/DIOW- assertion time, and t_K (t_{KR} or t_{Kw} , as appropriate) is the minimum DIOR-/DIOWnegation time. A host shall lengthen t_D and/or t_K to ensure that t_0 is equal to the value reported in the devices IDENTIFY DEVICE data.

4.6.3.1 Initiating a Multiword DMA data burst

The values for the timings for each of the Multiword DMA modes are contained in Table 50.

NOTE:

The host shall not assert DMACK- or negate both CS0 and CS1 until the assertion of DMARQ is detected. The maxium time from the assertion of DMARQ to the assertion of DMACK- or the negation of both CS0 and CS1 is not defined.

4.6.3.2 Sustaining a Multiword DMA data burst

The values for the timings for each of the Multiword DMA modes are contained in Table 50.

4.6.3.3 Device terminating a Multiword DMA data burst

The values for the timings for each of the Multiword DMA modes are contained in Table 50.

Figure 5. Device terminating a Multiword DMA data transfer

NOTE:

To terminate the data burst, the Host shall negate DMARQ within the tL of the assertion of the current DIOR- or DIOW- pulse. The last data word for the burst shall then be transferred by the negation of the current DIOR- or DIOW- pulse. If all data for the command has not been transferred, the Host shall reassert DMARQ again at any later time to resume the DMA operation.

4.6.3.4 Host terminating a Multiword DMA data burst

The values for the timings for each of the Multiword DMA modes are contained in Table 50.

Figure 6. Host terminating a Multiword DMA data transfer

NOTE:

1. To terminate the transmission of a data burst, the host shall negate DMACK- within the specified time after a DIOR- or DIOW- pulse. No further DIOR- or DIOW- pulses shall be asserted for this burst.

2. If the device is able to continue the transfer of data, the Host may leave DMARQ asserted and wait for the host to reassert DMACK- or may negate DMARQ at any time after detecting that DMACK- has been negated.

4.6.4 Ultra DMA data burst

Figure 7 through Figure 16 define the timings associated with all phases of Ultra DMA bursts. Table 4 contains the values for the timings for each of the Ultra DMA modes.

Table 4 - Ultra DMA data burst timing requirements

Namo	Мо	de O	Мо	de 1	Moo	de 2	Мо	de 3	Mo	de 4	Comment
Name	min	max	(See Notes 1 and 2)								
t _{2CYCTYP}	240		160		120		90		60		Typical sustained average two cycle time
t _{CYC}	112		73		54		39		25		Cycle time allowing for asymmetry and clock varia- tions (from STROBE edge to STROBE edge)
t _{2CYC}	230		154		115		86		57		Two cycle time allowing for clock variations (from ris- ing edge to next rising edge or from falling edge to next falling edge of STROBE)
t _{DS}	15		10		7		7		5		Data setup time at recipient
t _{DH}	5		5		5		5		5		Data hold time at recipient
t _{DVS}	70		48		30		20		6		Data valid setup time at sender (from data valid until STROBE edge) (See Note 4)
t _{DVH}	6		6		6		6		6		Data valid hold time at sender (from STROBE edge until data may become invalid) (See Note 4)
t _{FS}	0	230	0	200	0	170	0	130	0	120	First STROBE time (for device to first negate DSTROBE from STOP during a data in burst)
t _{LI}	0	150	0	150	0	150	0	100	0	100	Limited interlock time (See Note 3)
t _{MLI}	20		20		20		20		20		Interlock time with minimum(See Note 3)
t _{UI}	0		0		0		0		0		Unlimited interlock time (See Note 3)
t _{AZ}		10		10		10		10		10	Maximum time allowed for output drivers to release (from asserted or negated)
t _{ZAH}	20		20		20		20		20		Minimum delay time required for output
t _{ZAD}	0		0		0		0		0		Drivers to assert or negate (from released)
t _{ENV}	20	70	20	70	20	70	20	55	20	55	Envelope time (from DMACK- to STOP and HDMARDY- during data in burst initiation and from DMACK to STOP during data out burst initiation)
t _{SR}		50		30		20		NA		NA	STROBE-to-DMARDY- time (if DMARDY- is negated before this long after STROBE edge, the recipient shall receive no more than one additional data word)
t _{RFS}		75		70		60		60		60	Ready-to-final-STROBE time (no STROBE edges shall be sent this long after negation of DMARDY-)
t _{RP}	160		125		100		100		100		Minimum time to assert STOP or negate DMARQ
t _{IORDYZ}		20		20		20		20		20	Maximum time before releasing IORDY
t _{ZIORDY}	0		0		0		0		0		Minimum time before driving STROBE (See Note 5)
t _{ACK}	20		20		20		20		20		Setup and hold times for DMACK- (before assertion or negation)
t _{SS}	50		50		50		50		50		Time from STROBE edge to negation of DMARQ or assertion of STOP (when sender terminates a burst)

NOTE:

1. Timing parameters shall be measured at the connector of the sender or receiver to which the parameter applies. For example, the sender shall stop generating STROBE edges t_{RFS} after the negation of DMARDY-. Both STROBE and DMARDY- timing measurements are taken at the connector of the sender.

2. All timing measurement switching points(low to high and high to low) shall be taken at 1.5V.

3. t_{UI} , t_{MLI} , and t_{LI} indicate sender-to-recipient or recipient-to-sender interlocks, i.e., either sender or recipient is waiting for the other to respond with a signal before proceeding. t_{UI} is an inlimited interlock that has no maximum time value. t_{MLI} is a limited time-out that has a defined minimum. t_{LI} is a limited time-out that has a defined maximum.

4. The test load for t_{DVS} and t_{DVH} shall be a lumped capacitor load with no cable or receivers. Timing for t_{DVS} and t_{DVH} shall be met for all capacitive loads from 15 to 40 pf where all signals have the same capacitive load value.

5. t_{ZIORDY} may be greater than t_{ENV} since the device has a pull up on IORDY- giving it a known state when released.

4.6.4.1 Initiating an Ultra DMA data-in burst

The values for the timings for each of the Ultra DMA modes are contained in 4.4.4

Figure 7. Initiating an Ultra DMA data-in burst

NOTE:

1. The definitions for the DIOW-:STOP, DIOR-:HDMARDY-:HSTROBE and IORDY:DDMARDY-:DSTROBE signal lines are not in effect until DMARQ and DMACK are asserted.

4.6.4.2 Sustained Ultra DMA data-in burst

The values for the timings for each of the Ultra DMA modes are contained in 4.4.4

Figure 8. Sustained Ultra DMA data-in burst

NOTE:

1. DD(15:0) and DSTROBE signals are shown at both the host and the device to emphasize that cable setting time as well as cable propagation delay shall not allow the data signals to be considered stable at the host until some time after they are driven by the device.

4.6.4.3 Host pausing an Ultra DMA data-in burst

The values for the timings for each of the Ultra DMA modes are contained in 4.4.4

Figure 9. Host pausing an Ultra DMA data-in burst

NOTE:

- The host mat assert STOP to request termination of the ultra DMA burst no sooner than tRP after HDMARDY- is negated.
 If the t_{SR} timing is not satisfied, the host may receive zero, one, or two more data words from the Host.

4.6.4.4 Device terminating an Ultra DMA data-in burst

The values for the timings for each of the Ultra DMA modes are contained in 4.4.4

Figure 10. Device terminating an Ultra DMA data-in burst

NOTE:

1. The definitions for the DIOW-:STOP, DIOR-:HDMARDY-:HSTROBE and IORDY:DDMARDY-:DSTROBE signal lines are no longer in effect after DMARQ and DMACK are negated.

4.6.4.5 Host terminating an Ultra DMA data-in burst

The values for the timings for each of the Ultra DMA modes are contained in 4.4.4

Figure 11. Host terminating an Ultra DMA data-in burst

NOTE:

1. The definitions for the DIOW-:STOP, DIOR-:HDMARDY-:HSTROBE and IORDY:DDMARDY-:DSTROBE signal lines are no longer in effect after DMARQ and DMACK are negated.

4.6.4.6 Initiating an Ultra DMA data-out burst

The values for the timings for each of the Ultra DMA modes are contained in 4.4.4

Figure 12. Initiating an Ultra DMA data-out burst

NOTE:

1. The definitions for the DIOW-:STOP,IORDY:DDMARDY-:DSTROBE and DIOR-:HDMARDY-:HSTROBE signal lines are no longer in effect after DMARQ and DMACK are negated.

4.6.4.7 Sustained Ultra DMA data-out burst

The values for the timings for each of the Ultra DMA modes are contained in 4.4.4

Figure 13. Sustained Ultra DMA data-out burst

NOTE:

1. DD(15:0) and HSTROBE signals are shown at both the host and the device to emphasize that cable setting time as well as cable propagation delay shall not allow the data signals to be considered stable at the device until some time after they are driven by the host.

4.6.4.8 Device pausing an Ultra DMA data-out burst

The values for the timings for each of the Ultra DMA modes are contained in 4.4.4

Figure 14. Device pausing an Ultra DMA data-out burst

NOTE:

The device may negate DMARQ to request termination of the Ultra DMA burst no sooner that t_{RP} after DDMARDY- is negated.
 If the t_{SR} timing is not satisfied, the device may receive zero,one,or two more data words from the host.

4.6.4.9 Host terminating an Ultra DMA data-out burst

The values for the timings for each of the Ultra DMA modes are contained in $4.4.4\,$

Figure 15. Host terminating an Ultra DMA data-out burst

NOTE:

1. The definitions for the DIOW-:STOP,IORDY:DDMARDY-:DSTROBE and DIOR-:HDMARDY-:HSTROBE signal lines are no longer in effect after DMARQ and DMACK are negated.

4.6.4.10 Device terminating an Ultra DMA data-out burst

The values for the timings for each of the Ultra DMA modes are contained in 4.4.4

Figure 16. Device terminating an Ultra DMA data-out burst

NOTE:

1. The definitions for the DIOW-:STOP,IORDY:DDMARDY-:DSTROBE and DIOR-:HDMARDY-:HSTROBE signal lines are no longer in effect after DMARQ and DMACK are negated.

5. ATA Registers

5.1 I/O Register Descriptions

Communication to or from the device is through registers addressed by the signals from the host(CS0-,CS1-, DA(2:0), DIOR-, and DIOW), CS0- and CS1- both asserted or negated is an invalid (not used) address except when both are negated during a DMA data transfer. When CS0- and CS1- are both asserted or both negated and a DMA transfer is not in progress, the device shall hold DD (15:0) in the released state and ignore transitions on DIOR- and DIOW-. When CS0- is negated and CS1- is asserted only DA (2:0) with a value of 6th is valid. During invalid combinations of assertion and negation of CS0-, CS1-, DA0, DA1, and DA2, a device shall keep DD(15:0) in the high impedance state and ignore transitions on DIOR- and DIOW-. Valid register addresses are described in the clauses defining the registers.

Address - the CS and DA address of the register.
Direction - indicates if the register is read/write, read only, or write only from the host.
Access restrictions - indicates when the register may be accessed.
Effect - indicates the effect of accessing the register.
Functional description - describes the function of the register.
Field/bit description - describes the content of the register.

5.2 Alternate Status Register

5.2.1 Address

CS1	CS0	DA2	DA1	DA0			
A	N	A	A	Ν			
A=asserted, N=negated							

5.2.2 Direction

This register is read only. If this address is written to by the host, the Device Control register is written.

5.2.3 Access Restrictions

When the BSY bit is set to one, the other bits in this register shall not be used. The entire contents of this register are not valid while the device is in Sleep mode.

5.2.4. Effect

Reading this register shall not clear a pending interrupt.

5.2.5 Functional Description

This register contains the same information as the Status register in the command block.

5.3 Command Register

5.3.1 Address

CS1	CS0	DA2	DA1	DA0			
N	А	А	А	Ν			
A=asserted, N=negated							

5.3.2 Direction

This register is write only. If this address is read by the host, the Status register is read.

5.3.3 Access Restrictions

For all commands, this register shall only be written when BSY and DRQ are both cleared to zero and DMACK- is not asserted. If written when BSY or DRQ is set to one, the results of writing the Command register are indeterminate.

5.3.4 Effect

Command prcessing begins when this register is writte. The content of the Command Blcok registers become parameters of the command when this register is written. Writing this register clears any pending interrupt condition.

5.3.5 Functional description

This register contains the command code being sent to the device. Command execution begins immediately after this register is written.

5.3.6 Field/bit description

7	6	5	4	3	2	1	0		
	Command Code								

5.4 Cylinder High Register

5.4.1 Address

CS1	CS0	DA2	DA1	DA0			
Ν	А	А	Ν	А			
A=asserted, N=negated							

5.4.2 Direction

This register is read/write.

5.4.3 Access Restrictions

This register shall be written only when both BSY and DRQ are cleared to zero and DMACK- is noet asserted. The contents of this register are valid only when BSY is cleared to zero. If this register is written when BSY or DRQ is set to one, the result is indeterminate. The contents of this register are not valid while a device is in the Sleep mode.

5.4.4 Effect

The content of this register becomes a command parameter when the Comand register is written.

5.4.5 Functional description

The content of this register is command dependent

5.5 Cylinder Low Register

5.5.1 Address

CS1	CS0	DA2	DA1	DA0			
Ν	А	А	Ν	Ν			
A=asserted, N=negated							

5.5.2 Direction

This register is read/write.

5.5.3 Access Restrictions

This register shall be written only when both BSY and DRQ are cleared to zero and DMACK- is not asserted. The contents of this register are valid only when BSY is cleared to zero. If this register is written when BSY or DRQ is set to one, the result is indeterminate. The contents of this register are not valid while a device is in the Sleep mode.

5.5.4 Effect

The content of this register becomes a command parameter when the Command register is written.

5.5.5 Functional description

The content of this register is command dependent

5.6 Data Port

5.6.1 Address

When DMACK- is asserted, CS0- and CS1- shall be negated and transfers shall be 16-bits wide.

CS1	CS0	DA2	DA1	DA0			
N	N	Х	Х	Х			
A=asserted, N=negated, X=don't care							

5.6.2 Direction

This register is read/write.

5.6.3 Access Restrictions

This port shall be accessed for host DMA data transfers only when DMACK- and DMARQ are asserted.

5.6.4 Effect

The content of this register becomes a command parameter when the Command register is written. DMA out data transfers are processed by a series of reads to this port, each read transferring the data that follows the previous read. DMA in data transfers are processed by a series of writes to this port, each write transferring the data that follows the previous write. The results of a read during a DMA in or a write during a DMA out are indeterminate.

5.6.5 Functional description

The data port is 16-bits in width.

5.6.6 Field / bit description

15	14	13	12	11	10	9	8		
Data(15:8)									
7	7 6 5 4 3 2 1 0								
	Data(7:0)								

5.7 Data Register

5.7.1 Address

CS1	CS0	DA2	DA1	DA0				
N	A	N	Ν	Ν				
	A=asserted, N=negated							

5.7.2 Direction

This register is read/write.

5.7.3 Access Restrictions

This register shall be accessed for host PIO data transfer only when DRQ is set to on and DMACK- is not asserted. The contents of this register are not valid while a device is in the Sleep mode.

5.7.4 Effect

PIO out data transfers are processed by a series of reads to this register, each read transferring the data that follows the previous read. PIO in data transfers are processed by a series of writes to this register, each write transferring the data that follows the previous write. The results of a read during a PIO in or a write during a PIO out are indeterminate.

5.7.5 Functional description

The data port is 16-bits in width. When a CFA device is in 8-bit PIO data transfer mode this register is 8-bits wide using only DD7 to DD0.

5.7.6 Field / bit description

15	14	13	12	11	10	9	8	
Data(15:8)								
				_	_	_		
7	6	5	4	3	2	1	0	
	Data(7:0)							

5.8 Device Control Register

5.8.1 Address

CS1	CS0	DA2	DA1	DA0				
А	Ν	А	А	Ν				
	A=asserted, N=negated							

5.8.2 Direction

This register is write only. If this address is read by the host, the Alternate Status register is read.

5.8.3 Access Restrictions

This register shall only be written when DMACK- is not asserted.

5.8.4 Effect

The content of this register shall take effect when written.

5.8.5 Functional description

This register allows a host to software reset attached devices and to enable or disable the assertion of the INTRQ signal by a selected device. When the Device Control Register is written, both devices respond to the write regardless of which device is selected. When the SRST bit is set to one, both devices shall perform the software reset protocol. The device shall respond to the SRST bit when in the SLEEP mode.

5.8.6 Field / bit description

7	6	5	4	3	2	1	0
r	r	r	r	r	SRST	nIEN	0

• Bits 7 through 3 are reserved.

• SRST is the host software reset bit.

• nIEN is the enable bit for the device Assertion of INTRQ to the host. When the nIEN bit is cleared to zero, and the device is selected, INTRQ shall be enabled through a tri-state buffer and shall be asserted or negated by the device as appropriate. When the nIEN bit is set to one, or the device is not selected, the INTRQ signal shall be in a high impedance state.

• Bit 0 shall be cleared to zero.

5.9 Device / Head Register

5.9.1 Address

CS1	CS0	DA2	DA1	DA0				
Ν	А	А	А	Ν				
	A=asserted, N=negated							

5.9.2 Direction

This register is read/write.

5.9.3 Access Restrictions

This register shall be written only when both BSY and DRQ are cleared to zero and DMACK- is not asserted. The contents of this register are valid only when BSY is cleared to zero. If this register is written when BSY or DRQ is set to one, the result is indeterminate.

5.9.4 Effect

The DEV bit becomes effective when this register is written by the host or the signature is set by the device. All other bits in this register become a command parameter when the Command register is written.

5.9.5 Functional description

But 4, DEV, in this register selects the device. Other bits in this register are command dependent.

5.9.6 Field / bit description

The content of this register shall take effect when written.

7	6	5	4	3	2	1	0
Obsolete	#	Obsolete	DEV	#	#	#	#

NOTE:

Some hosts set these bits to one. Devices shall ignore these bits.

• Obsolete: These bits are obsolete.

• #:The content of these bits is command dependent

• DEV: Device select. Cleared to zero selects Device 0. Set to one selects Device1.

5.10 Error Register

5.10.1 Address

CS1	CS0	DA2	DA1	DA0
Ν	А	Ν	Ν	А
		A=asserted, N=negate	ed	

5.10.2 Direction

This register is read only. If this address is written to by the host, the Features register is written.

5.10.3 Access Restrictions

The contents of this register shall be valid when BSY and DRQ equal zero and ERR equals one. The contents of this register shall be valid upon completion of power-on, or after a hardware or software reset, or after command completion of an EXECUTE DEVICE DIAGNOSTICS. The contents of this register are not valid while a devcie is in the Sleep mode.

5.10.4 Effect

None.

5.10.5 Functional description

This register contains status for the current command.

Following a power-on, a hardware or software reset, or command completion of an EXECUTE DEVICE DIAGNOSTIC, this register contains a diagnostic code. At command description of any command except EXECUTE DEVICE DIAGNOSTIC, the contents of this register are valid when the ERR bit is set to one in the Status Register.

5.10.6 Field / bit description

7	6	5	4	3	2	1	0
#	#	#	#	#	ABRT	#	#

Bit 2: ABRT(command aborted) is set to one to indicate the requested command has been command aborted because the command code or a command parameter is invalid or some other error has occurred.
#: The content of this bit is command dependent

5.11 Features Register

5.11.1 Address

CS1	CS0	DA2	DA1	DA0				
N	А	Ν	Ν	А				
	A=asserted, N=negated							

5.11.2 Direction

This register is write only. If this address is read by the host, the Error register is read.

5.11.3 Access Restrictions

This register shall be written only when BSY and DRQ equal zero and DMACK- is not asserted. If this register is written when BSY or DRQ is set to one, the result is indeterminate.

5.11.4 Effect

The content of this register becomes a command parameter when the Command register is written.

5.11.5 Functional description

The content of this register is command dependent.

5.12 Sector Count Register

5.12.1 Address

CS1	CS0	DA2	DA1	DA0				
Ν	А	Ν	А	Ν				
	A=asserted, N=negated							

5.12.2 Direction

This register is read/write.

5.12.3 Access Restrictions

This register shall be written only when BSY and DRQ equal zero and DMACK- is not asserted. The contents of this register are valid only when both BSY and DRQ are zero. If this register is written when BSY or DRQ is set to one, the result is indeterminate. The contents of the this register are not valid while a device is in the Sleep mode.

5.12.4 Effect

The content of this register becomes a command parameter when the Command register is written.

5.12.5 Functional description

The content of this register is command dependent.

5.13 Sector Number Register

5.13.1 Address

CS1	CS0	DA2	DA1	DA0				
N	А	N	А	А				
	A=asserted, N=negated							

5.13.2 Direction

This register is read/write.

5.13.3 Access Restrictions

This register shall be written only when BSY and DRQ equal zero and DMACK- is not asserted. The contents of this register are valid only when both BSY and DRQ are zero. If this register is written when BSY or DRQ is set to one, the result is indeterminate. The contents of the this register are not valid while a device is in the Sleep mode.

5.13.4 Effect

The content of this register becomes a command parameter when the Command register is written.

5.13.5 Functional description

The content of this register is command dependent.

5.14 Status Register

5.14.1 Address

CS1	CS0	DA2	DA1	DA0			
Ν	А	А	A A				
A=asserted, N=negated							

5.14.2 Direction

This register is read only. If this address is written to by the host, the Command register is written.

5.14.3 Access Restrictions

The contents of this register, except for BSY, shall be ignored when BSY is set to one. BSY is valid at all times. The contents of this register are not valid while a device is in the Sleep mode.

5.14.4 Effect

Reading this register when an interrupt is pending causes the interrupt pending to be cleared. The host should not read the Status Register when an interrupt is expected as this may clear the interrupt pending before the INTRQ can be recognized by the host.

5.14.5 Functional description

The register contains the device status. The contents of this register are updated to reflect the current state of the device and the progress of any command being executed by the device.

5.14.6 Field / bit description

7	6	5	4	3	2	1	0
BSY	DRDY	#	#	DRQ	Obsolete	Obsolete	ERR

5.14.6.1 BSY(Busy)

BSY is set to one to indicate that device is busy. After the host has written the Command Register the device shall have either the BSY bit set to one, or the DRQ bit set to one, until command completion or the device has performed a bus release for an overlapped command.

The BSY bit shall be set to one by the device :

1) after either the negation of RESET- or the setting of the SRST bit to one in the Device Control Regitster;

2) after writing the Command Register if the DRQ bit is not set to one;

3) between blocks of a data transfer during PIO data-in commands before the DRQ bit is cleared to zero;

4) After the transfer of a data block during PIO data-out commands before the DRQ bit is cleared to zero;

5) during the data transfer of DMA commands either the BSY bit, the DRQ bit, or both shall be set to one;

NOTE:

The BSY bit may be set to one and then cleared to zero so quickly, that host detection of the BSY bit being set to one is not certain.

When BSY is set to one, the device has control of the Command Block Registers and;

1) a write to a Command Block Register by the host shall be ignored by the device except for writing DEVICE **RESET command;**

2) a read from a Command Block register by the host will most likely yield invalid contents except for the BSY bit itself.

The BSY bit shall be cleared to zero by the device:

1)after setting DRQ to one to indicate is ready to transfer data;

- 2) at command completion;
- 3) upon releasing the bus for an overlapped command;

4) when the device is ready to accept commands that do not require DRDY during a power on, hardware or software reset.

When BSY is cleared to zero, the host has control of the Command Block registers, the device shall:

1) not set DRQ to one;

2) not change ERR bit;

3) not change the content of any other Command Block Register;

4) set the SERV bit to one when ready to continue an overlapped command that has been bus released.

5.14.6.2 DRDY(Device ready)

The DRDY bit shall be set to one by the device :

1) when the device is capable of accepting all commands for devices

When the DRDY bit is set to one :

1) the device shall accept and attempt to execute all implemented commands;

2) devices that implement the Power Management feature set shall maintain the DRDY bit set to one when they are in the Idle or Standby modes.

5.14.6.3 Command dependent

The use of bits marked with # are command dependent. Bit 4 was formerly the DSC(Device Seek Complete) bit.

5.14.6.4 DRQ(Data request)

DRQ indicates that the device is ready to transfer a word of data between the host and the device. After the host has written the Command Register the device shall either set the BSY bit to one or the DRQ bit to one, until command completion or the device has performed a bus release for an overlapped command.

The DRQ bit shall be set to one by the device :

when BSY is set to one and data is ready for PIO transfer;
 during the data transfer of DMA commands either the BSY bit, the DRQ bit, or both shall be set to one.

When the DRQ bit is set to one, the host may :

1) transfer data via PIO mode;

2) transfer data via DMA mode if DMARQ and DMACK- are asserted.

The DRQ bit shall be cleared to zero, the host may :

1) transfer data via DMA mode if DMARQ and DMACK- are asserted and BSY is set to one.

5.14.6.5 Obsolete bits

Some bits in this register were defined in previous ATA standards but have been declared obsolete in this spec These bits are labeled "obsolete".

5.14.6.6 ERR(Error)

ERR indicates that an error occurred during execution of the previous command.

The ERR bit shall be set to one by the device :

1) when BSY or DRQ is set to one and an error occurs in the executing command.

When the ERR bit is set to one :

1) the bits in the Error register shall be valid;

2) the device shall not change the contents of the following registers until a new command has been accepted, the SRST bit is set to one or RESET- is asserted :

- Error Register
- Cylinder High/Low Register
- Sector Count Register
- Sector Number Register
- Device / Head Register

The ERR bit shall be cleared to zero by the device :

1) when a new command is written to the Command Register;

2) when the SRST bit is set to one;

3) when the RESET- signal is asserted.

When the ERR bit is cleared to zero at the end of a command:

1) the content of the Error Register shall be ignored by the host.

6. Command Descriptions

6.1 Supporting ATA Command Set

Command Name	Command Code	Command Name	Command Code
RECALIBRATE	10h	IDLE	E3h
READ SECTOR(S)	20h	READ BUFFER	E4h
WRITE SECTOR(S)	30h	CHECK POWER MODE	E5h
READ VERIFY SECTOR(S)	40h	SLEEP	E6h
SEEK	70h	FLUSH CACHE	E7h
EXECUTE DEVICE DIAGNOSTIC	90h	WRITE BUFFER	E8h
INITIALIZE DEVICE PARAMETERS	91h	IDENTIFY DEVICE	ECh
SMART ^{*1}	B0h	SET FEATURES ^{*2}	EFh
READ MULTIPLE	C4h	SECURITY SET PASSWORD	F1h
WRITE MULTIPLE	C5h	SECURITY UNLOCK	F2h
SET MULTIPLE MODE	C6h	SECURITY ERASE PREPARE	F3h
READ DMA	C8h	SECURITY ERASE UNIT	F4h
WRITE DMA	CAh	SECURITY FREEZE LOCK	F5h
STANDBY IMMEDIATE	E0h	SECURITY DISABLE PASSWORD	F6h
IDLE IMMEDIATE	E1h	READ NATIVE MAX ADDRESS	F8h
STANBY	E2h	SET MAX ^{*3}	F9h

^{*1} : Refer to 6.3.1

*2 : Refer to 6.5.1

*3 : Refer to 6.6.1

6.2 SECURITY FEATURE Set

The Security mode features allow the host to implement a security password system to prevent unauthorized access to the disk drive.

6.2.1 SECURITY mode default setting

The NSSD is shipped with master password set to 20h value(ASCII blanks) and the lock function disabled. The system manufacturer/dealer may set a new master password by using the SECURITY SET PASSWORD command, without enableing the lock function.

6.2.2 Initial setting of the user password

When a user password is set, the drive automatically enters lock mode by the next powered-on

6.2.3 SECURITY mode operation from power-on

In locked mode, the NSSD rejects media access commands until a SECURITY UNLOCK command is successfully completed.

6.2.4 Password lost

If the user password is lost and High level security is set, the drive does not allow the user to access any data. However, the drive can be unlocked using the master password.

If the user password is lost and Maxium security level is set, it is impossible to access data. However, the drive can be unlocked using the ERASE UNIT command with the master password. The drive will erase all user data and unlock the drive.

The execution time of SECURITY ERASE UNIT command is shown below.

- 32GB NSSD : 60 seconds

- 16GB NSSD : 30 seconds

6.3 SMART FEATURE Set

6.3.1 Sub Command Set

		SMART	
READ DATA	D0h	READ LOG	D5h
READ ATTRIBUTE THRESHOLDS	D1h	ENABLE OPERATIONS	D8h
ENABLE/DISABLE AUTOSAVE	D2h	DISABLE OPERATIONS	D9h
SAVE ATTRIBUTE VALUES	D3h	RETURN STATUS	DAh
EXECUTE OFF-LINE IMMIDIATE	D4h	CHANGE THRESHOLD SECTOR SIZE	E0h

6.3.2 SMART Data Structure(READ DATA(D0h))

Byte	F/V	Descriptions			
0~1	Х	Revision code			
2~3	Х	Valid Information Count			
4~7	V	Total number of sectors for replacement			
8~11	V	Number of sectors actually replaced			
12~15	Х	Number of sectors initially mapped out			
16~19	V	Threshold sector size [default value :19000h(50MB)]			
19~361	Х	Vendor specific			
362	V	Off-line data collection status			
363	Х	Self-test execution status byte			
364~365	V	Total time in seconds to complete off-line data collection activity			
366	Х	Vendor specific			
367	F	Off-line data collection capability			
368-369	F	SMART capability			
370	F	Error logging capability 7-1 Reserved 0 1=Device error logging supported			
371	Х	Vendor specific			
372	F	Short self-test routine recommended polling time(in minutes)			
373	F	Extended self-test routine recommended polling time(in minutes)			
374-385	R	Reserved			
386-510	Х	Vendor specific			
511	V	Data structure checksum			
Key : F=the content of V=the content of device. X=the content of	the byte is fixed the byte is varia the byte is venc	and does not change. ble and may change depending on the state of the device or the commands executed by the lor specific and may be fixed or variable.			

R=the content of the byte is reserved and shall be zero.

6.3.3 Threshold Sector Size

Threshold Sector Size is an predefined value that makes the waring message if the number of reserved sector size is below this value. The status can be read from Cylinder Register by READ DATA(D0h) command.

Deafult value of the Cylinder Register has C24Fh, but if the number of reserved sector size is below the Treshold Sector Size, the Cylinder Register has 2CF4h.

In order to change the Threshold Sector Size, should be set the changed value in Sector Count Register with CHANGE THRESH-OLD SECTOR SIZE (E0h) command.

* Sector Count Register value (unit : MB, Range : 0~199)

6.4 BSY Status in SLEEP Command

In SLEEP command, NSSD takes 1ms to get into SLEEP state. During this period, all the command operation is prohibitted. The status Register value is D0h after getting into SLEEP state.

6.5 SET FEATURES

6.5.1 SET FEATURES Register Value

SET FEATURES						
ENABLE WRITE CACHE	02h					
SET TRANSFER MODE	03h					
DISABLE WRITE CACHE	82h					

Default settings after power on are Data transfer mode of Ultra DMA mode 4, PIO mode 4 and write cache enabled.

6.6 SET MAX

6.6.1 SET MAX FEATURES Register Value

Each of SET MAX commands is identified by the value placed in the Feature register. Below table shows these Features register values.

SET MAX							
SET MAX ADDRESS	01h						
SET MAX SET PASSWORD	02h						
SET MAX LOCK	03h						
SET MAX FREEZE LOCK	04h						
SET MAX UNLOCK	05h						

55

6.7 Identify Device Data

Word	4GB	16GB	32GB	Description
0	0x0040	0x0040	0x0040	General information
1	0x1E59	0x3FFF	0x3FFF	Number of logical cylinders
2	0x0000	0x0000	0x0000	Specific configuration
3	0x0010	0x0010	0x0010	Number of logical heads
4 - 5	0x0000	0x0000	0x0000	Retired
6	0x003F	0x003F	0x003F	Number of logical sectors per logical track
7 - 8	0x0000	0x0000	0x0000	Reserved
9	0x0000	0x0000	0x0000	Retired
10 -19	0xXXXX	0xXXXX	0xXXXX	Serial number(20 ASCII characters)
20 - 21	0x0000	0x0000	0x0000	Retired
22	0x0000	0x0000	0x0000	Obsolete
23 - 26	0xXXXX	0xXXXX	0xXXXX	Firmware revision(8 ASCII characters)
27- 46	0xXXXX	0xXXXX	0xXXXX	Model number
47	0x8010	0x8010	0x8010	Number of sectors on multiple commands
48	0x0000	0x0000	0x0000	Reserved
49	0x2B00	0x2B00	0x2B00	Capabilities
50	0x4000	0x4000	0x4000	Capabilities
51 - 52	0x0000	0x0000	0x0000	Obsolete
53	0x0007	0x0007	0x0007	Reserved
54	0x1E59	0x3FFF	0x3FFF	Number of current logical cylinders
55	0x0010	0x0010	0x0010	Number of current logical heads
56	0x003F	0x003F	0x003F	Number of current logical sectors per track
57	0x7E70	0xFC10	0xFC10	Current capacity in sectors
58	0x00FB	0x00FB	0x00FB	
59	0x0110	0x0110	0x0110	Multiple sector setting
60	0x8000	0x0000	0x0000	Total number of user addressable sectors(LBA mode only)
61	0x0077	0x01E8	0x03D0	
62	0x0000	0x0000	0x0000	Obsolete
63	0x0007	0x0007	0x0007	Multi-word DMA transfer
64	0x0003	0x0003	0x0003	Flow control PIO transfer modes supported
65	0x0078	0x0078	0x0078	Minimum Multiword DMA transfer cycle time per word
66	0x0078	0x0078	0x0078	Manufacturer's recommended Multiword DMA transfer cycle time per word
67	0x00F0	0x00F0	0x00F0	Minimum PIO transfer cycle time without flow control
68	0x0078	0x0078	0x0078	Minimum PIO transfer cycle time with IORDY flow control
69 - 74	0x0000	0x0000	0x0000	Reserved
75	0x0000	0x0000	0x0000	No DMA QUEUED command Supports
76 - 79	0x0000	0x0000	0x0000	Reserved
80	0x003C	0x003C	0x003C	ATA5 rev3
81	0x0013	0x0013	0x0013	
82	0x342B	0x342B	UX342B	Command set supported
83	0x4101	0x4101	0x4101	Command set supported
84	0x4000	0x4000	0x4000	Command set/reature supported extension
85	0x3428	0x3428	0x3428	Command set/feature enabled
86	0x4101	0x4101	UX4101	Command set/feature enabled
87	0x4000	0x4000	0x4000	Command set/feature default
88	0x101F	0x101F	0x101F	Ultra DMA transfer

Word	4GB	16GB	32GB	Description
89 - 91	0x0000	0x0000	0x0000	Reserved
92	0xFFFE	0xFFFE	0XFFFE	Master Password Revision Code
93	0x2040	0x2040	0x2040	Hardware reset result
94 - 126	0x0000	0x0000	0x0000	Reserved
127	0x0000	0x0000	0x0000	Removable Media Status Notification feature set support
128	0x0001	0x0001	0x0001	Security status
129 - 159	0x0000	0x0000	0x0000	Vendor specific
160 - 254	0x0000	0x0000	0x0000	Reserved
255	0x0000	0x0000	0x0000	Integrity word

6.8 Hardware Reset State Diagram

BSY	DRQ	REL	SERV	C/D	I/O	INTRQ	DMARQ	PDIAG-	DASP-
V	0	0	0	0	0	R	R	V	V

6.9 Software Reset State Diagram

BSY	DRQ	REL	SERV	C/D	I/O	INTRQ	DMARQ	PDIAG-	DASP-
V	0	0	0	0	0	R	R	V	R

Device0 : software reset state diagram

BSY	DRQ	REL	SERV	C/D	I/O	INTRQ	DMARQ	PDIAG-	DASP-
V	0	0	0	0	0	R	R	V	R

Device 1 : software reset state diagram

7. Ordering Information

	MCXXXXXX	X X X - X X X X	ХX
	1 2 3 4 5 6 7 8 9	10 11 12 13 14 15 16 1	7 18
1. Module: M		11. Flash Package	
		P : TSOP1(LF)	
2. Card: C			
		12. PCB Revision AND Production Site	
3~4. Flash Density		P : None(STS)	Q : 1st Rev.(STS)
4G : 4G	8D : 8G DDP	R : 2nd Rev.(STS)	
AQ : 16G QDP	BO : 32G DSP		
		13. "-"	
5. Feature			
E : NSSD		14. Packing Type	
		0 : With Label	
6~8. NSSD Density			
04G : 4G Byte	08G : 8G byte	15. Controller	
16G : 16G Byte	32G : 32G Byte	X : S4LD166X01(LQFP)	W : S4LD166X01(FBGA)
9. NSSD Type		16. Controller Firmware Revision	
8 : 1.8 inch Type	5 : 2.5 inch Type	A : None	B : 1st Rev.
		C : 2nd Rev.	D : 3rd Rev.
10. Component Generation		Z : None(No Cont.)	
M : 1st Generation	A : 2nd Generation		
B : 3rd Generation	C: 4th Generation	17 ~ 18. Customer Grade	
D: 5th Generation		" Customer List Reference "	

8. Product Line-up

Part Number	Density	Туре	Remark
MC4GE04G8APR-0XA	4GB	1.8"	
MC8DE08G8APR-0XA	8GB	1.8"	R(12th digit) : revisioned PCB
MCAQE16G8APR-0XA	16GB	1.8"	
MCBOE32G8APR-0XA	32GB	1.8"	
MC4GE04G5APP-0XA	4GB	2.5"	
MC8DE08G5APP-0XA	8GB	2.5"	
MC8DE16G5APP-0XA	16GB	2.5"	
MCAQE32G5APP-0XA	32GB	2.5"	

