Useful Factors and Formulas

Conversion Factors				
Lbs to kg	1kg =2.204lbs	kgs to lbs	1lb = .454kgs	
USG to Lt	1USG = 3.785Lt	It to USG	1lt = 0.264USG	
Lt to Imp Gal	1lt = 0.22 Imp G	Imp.Gal to lt	1Imp G = 4.55lt	
NM to KM	1nm = 1.852km	km to nm	1km = 0.54nm	
NM to StM to ft	1nm = 1.15stm 1nm = 6080ft	Stm to nm to ft	1 stm = 0.87nm 5280ft	
FT to Meters	1 FT = 0.3048 m	meters to ft	1 m = 3.281 FT	
Inches to Cm	1 inch = 2.54cm	cm to inches	1cm = 0.394"	
Hpa(mb) to "Hg	1mb = .029536"	" Hg to Hpa (mb)	1″ = 33.8mb	

AVGAS FUEL Volume / weight SG = 0.72					
Litres	Lt/kg	kgs	Litres	lbs/lts	Lbs
1.39	1	0.72	0.631	1	1.58

Crosswind component per 10 kts of wind								
Kts	10	20	30	40	50	60	70	80
10	2	3	5	6	8	9	9	10

Useful Formulas			
Celsius (C) to Fahrenheit (F)	C = 5/9 x(F-32),		
	F = Cx9/5+32		
Pressure altitude (PA)	$PA = Altitude AMSL + 30 \times (QNH-1013)$		
	i.e. Altitude AMSL is 30ft higher than pressure altitude for every mb above 1013mb		
	Memory aid – Subscale up/down altitude up/down		
Standard Temperature (ST)	ST = 15 - 2 x PA/1000		
	ie. 2 degrees cooler per 1000ft altitude		
Density altitude (DA)	DA = PA + (-) 120 ft/deg above (below) ST		
	i.e. 120Ft higher for every degree hotter than standard		
Specific Gravity	SG x volume in litres = weight in kgs		
One in 60 rule	1 degree of arc @ 1nm at a radius of 60nm		
	i.e degrees of arc approximately equal length of arc at a radius of 60nm		
Rate 1 Turn Radius	$R = GS/60/\pi \approx GS/20$		
Percent to Gradient fpm	Fpm \approx % x G/S Or Fpm = % x G/S x 1.013		
Gust factor	Vat = Vref+1/2HWC + Gust		
	eg. Wind 20kts gusting 25 at 30 degrees to Runway:		
	Vat = Vref + .7x10 + 5 = Vref + 12,		
	If the Vref is 75kts, Vat should be $75+12 = 87kts$		