JAA Administrative & Guidance Material Section One : General Part 3 : Temporary Guidance Material

LEAFLET N° 2 rev. 1 : AMJ 20x2 - JAA GUIDANCE MATERIAL ON AIRWORTHINESS

APPROVAL AND OPERATIONAL CRITERIA FOR THE USE OF

NAVIGATION SYSTEMS IN EUROPEAN AIRSPACE

DESIGNATED FOR BASIC RNAV OPERATIONS

This revision to the Temporary Guidance Leaflet N° 2 supersedes the previous version published by the JAA in July 1996, and contains :

AMJ 20x2 - JAA Guidance Material on Airworthiness Approval and Operational Criteria for the use of Navigation Systems in European airspace designated for Basic RNAV Operations. This Leaflet presents revised guidance material relative to the implementation of Basic RNAV operations within European designated Airspace, from January 1998. This Leaflet has been coordinated with EUROCONTROL.

This Leaflet will be amended, as required.

PREAMBLE

JAA Temporary Guidance Leaflet N° 2 was first published in July 1996, containing Advisory Material for the Airworthiness Approval of Navigation Systems for use in European Airspace designated for Basic RNAV operations, This material was developed by EUROCAE WG-13 and was commonly referenced as AMJ 20x2. Initially, the JAA intended to produce AMJ 20x2 as part of a series of interpretative, explanatory material and acceptable means of compliance relative to aircraft in general, and applicable to more than one JAR. However, due to difficulties in formalising the AMJ-20-Series concept, this AMJ was published as Temporary Guidance Material, so as to provide timely information for the impending implementation date for Basic RNAV operations.

This revision 1 to the Leaflet contains both airworthiness and operational guidance material including specific guidance on the approval and use of stand-alone GPS equipment for the purposes of conducting Basic RNAV operations. Due to the projected withdrawal of its ground stations, Omega is no longer considered as being able to support Basic RNAV operations. The inclusion of AMJ 20x2 in the title has been retained so as to avoid amendment to the EUROCONTROL Standard and Aeronautical Information Circulars published by national authorities.

Publication of the text as Temporary Guidance Material does not change the status of the document as described in its "Purpose" below.

1. PURPOSE

This document provides guidance material for airworthiness approval and operational criteria for the use of navigation systems in European airspace designated for Basic RNAV operations. The document establishes an acceptable means, but not the only means, that can be used in the airworthiness approval process, and provides guidelines for operators where GPS stand-alone equipment is used as the means for Basic RNAV operations. The document is in accordance with the April 1990 directive issued by the Transport Ministers of ECAC member states and with regard to the Basic RNAV operations as defined within the EUROCONTROL Standard 003-93 Edition 1 and satisfies the intent of ICAO Doc. 9613-AN/937 Manual on Required Navigation Performance (RNP) First Edition 1994. It is consistent also with Regional Supplementary Procedures contained within ICAO Doc 7030.

2. SCOPE

This document provides guidance related to navigation systems intended to be used for Basic RNAV operations and considers existing airworthiness approval standards as providing acceptable means of compliance. The content is limited to general certification considerations including navigation performance, integrity, functional requirements and system limitations.

Compliance with the guidance in this Leaflet does not constitute an operational approval/authorisation to conduct Basic RNAV operations. Aircraft operators should apply to their Authority for such an approval/authorisation.

ICAO RNP-4 criteria are outside the scope of this Leaflet, but it is expected that navigation systems based on position updating from traditional radio aids and approved for Basic RNAV operations in accordance with this Leaflet will have an RNP-4 capability.

Related requirements

JAR/FAR 25.1301, 25.1307, 25.1309, 25.1321, 25.1322, 25.1431

JAR/FAR 23.1301, 23.1309, 23.1311, 23.1321, 23.1322, 23.1431

JAR/FAR 27.1301, 27.1309, 27.1321, 27.1322

JAR/FAR 29.1301, 29.1309, 29.1321, 29.1322, 29.1431

JAR-OPS 1.243, 1.845, 1.865, as amended by NPA-OPS-7

JAR-OPS 3.243, 3.845, 3.865 as amended by NPA-OPS.8

National operating requirements.

ATC Documents

EUROCONTROL Standard Document 003-93 Edition 1.

ICAO Doc. 9613-AN/937 - Manual on Required Navigation Performance (RNP) First Edition - 1994.

Related navigation documents

JAA Advisory Material

	AMJ 25-11	Electronic Display Systems.
--	-----------	-----------------------------

TGL N° 3 JAA Interim Guidance Material on Airworthiness Approval and Operational Criteria for the use of the NAVSTAR Global

Positioning System (GPS).

FAA Advisory Circulars

AC 20-121 A	Airworthiness Approval of LORAN C for use in the U.S. National
	Airspace System.

AC 20-130 () Airworthiness Approval of Multi-sensor Navigation Systems for use in the U.S. National Airspace System.

AC 20-138 Airworthiness Approval of NAVSTAR Global Positioning System

(GPS) for use as a VFR and IFR Supplemental Navigation System.

Inertial Navigation Systems (INS). AC 25-15 Approval of FMS in Transport Category Airplanes.

AC 90-45 A Approval of Area Navigation Systems for use in the U.S. National Airspace System.

JTSOs/TSOs

AC 25-4

JTSO-2C115/

TSO-C115 () Airborne Area Navigation Equipment Using Multi-Sensor Inputs.

TSO-C129 () Airborne Supplemental Navigation Equipment Using the Global Positioning System (GPS).

EUROCAE/RTCA documents

ED-27 Minimum Operational Performance Requirements (MOPR) for Airborne Area Navigation Systems, based on VOR and DME as

sensors.

ED-28 Minimum Performance Specification (MPS) for Airborne Area

Navigation Computing Equipment based on VOR and DME as

sensors.

ED-39	MOPR for Airborne Area Navigation Systems, based on two DME as sensors.
ED-40	MPS for Airborne Computing Equipment for Area Navigation System using two DME as sensors.
ED-58	Minimum Operational Performance Specification (MOPS) for Area Navigation Equipment using Multi-Sensor Inputs.
ED-72 ()	MOPS for Airborne GPS Receiving Equipment.
DO-180 ()	Minimum Operational Performance Standards (MOPS) for Airborne Area Navigation Equipment Using a Single Collocated VOR/DME Sensor Input.
DO-187	MOPS for Airborne Area Navigation Equipment Using Multi-Sensor Inputs.
DO-200	Preparation, Verification and Distribution of User-Selectable Navigation Data Bases.
DO-201	User Recommendations for Aeronautical Information Services.
DO-208	MOPS for Airborne Supplemental Navigation Equipment Using Global Positioning System (GPS).

3. SYSTEMS CAPABILITY

Area navigation (RNAV) is a method which permits aircraft navigation along any desired flight path within the coverage of either station referenced navigation aids or within the limits of the capability of self-contained aids, or a combination of both methods.

In general terms, RNAV equipment operates by automatically determining aircraft position from one, or a combination, of the following together with the means to establish and follow a desired path:

VOR/DME

DME/DME

INS* or IRS

LORAN C*

GPS*

Notes 1 : Equipment marked with an asterisk*, is subject to the limitations contained in paragraph 4.4.2.

Notes 2 : Due to the projected withdrawal of its ground stations, Omega is no longer considered as being able to support Basic RNAV operations.

4. AIRWORTHINESS APPROVAL

4.1. Criteria For Basic RNAV System

4.1.1. Accuracy

The navigation performance of aircraft approved for Basic RNAV operations within European airspace requires a track keeping accuracy equal to or better than \pm 5 NM for 95 % of the flight time. This value includes signal source error, airborne receiver error, display system error and fight technical error.

This navigation performance assumes the necessary coverage provided by satellite or ground based navigation aids is available for the intended route to be flown.

4.1.2. Availability and Integrity

Guidance for assessment of the effects associated with the loss of navigation function or erroneous display of related information is given in AMJ 25-11 paragraph 4 a (3) (viii).

The minimum level of availability and integrity required for Basic RNAV systems for use in designated European airspace can be met by a single installed system comprising one or more sensors, RNAV computer, control display unit and navigation display(s) (e.g. ND, HSI or CDI) provided that the system is monitored by the flight crew and that in the event of a system failure the aircraft retains the capability to navigate relative to ground based navigation aids (e.g. VOR, DME and NDB).

4.2. Functional Criteria

4.2.1. Required Functions

The following system functions are the minimum required to conduct Basic RNAV operations.

(a) Continuous indication of aircraft position relative to track to be displayed to the pilot flying on a navigation display situated in his primary field of view. In addition where the minimum flight crew is two pilots, indication of aircraft position relative to the pilot not flying on a navigation display situated in his primary field of view.

- (b) Display of distance and bearing to the active (To) waypoint.
- (c) Display of ground speed or time to the active (To) waypoint.
- (d) Storage of waypoints; minimum of 4.
- (e) Appropriate failure indication of the RNAV system, including the sensors.

4.2.2. Recommended Functions

In addition to the requirements of paragraph 4.2.1, the following system functions and equipment characteristics are recommended :

- (a) Autopilot and/or Flight Director coupling.
- (b) Present position in terms of latitude and longitude.
- (c) "Direct To" function.
- (d) Indication of navigation accuracy (e.g. quality factor).
- (e) Automatic channel selection of radio navigation aids.
- (f) Navigation data base.
- (g) Automatic leg sequencing and associated turn anticipation.

4.3. Aircraft Flight Manual - MMEL (Master Minimum Equipment List)

The basis for certification should be stated in the Aircraft Flight Manual (AFM), together with any RNAV system limitations. The AFM may also provide the appropriate RNAV system operating and abnormal procedures applicable to the equipment installed, including, where applicable, reference to required modes and systems configuration necessary to support an RNP capability.

The (Master) Minimum Equipment List MMEL/MEL should identify the minimum equipment necessary to satisfy the Basic RNAV criteria defined in paragraphs 4.1 and 4.2.

4.4. <u>Basic RNAV Systems - Acceptable Means of Compliance</u>

4.4.1. Acceptable Means of Compliance

Navigation systems which are installed on aircraft in accordance with the advisory material contained within FAA AC 90-45A, AC 20-130 (), AC 20-138 or AC 25-15, are acceptable for Basic RNAV operations. Where reference is made in the AFM to either the above advisory material or the specific levels of available navigation performance (RNP), no further compliance statements will be required.

Compliance may be based also on the lateral navigation standards defined in JTSO-2C115, TSO-C115 (), TSO-C129 (), ED-27/28, ED-39/40, DO-187/ED-58 or DO-180 (). However, qualification of the equipment to these standards, in itself, is not considered as sufficient for the airworthiness approval.

4.4.2. Limitations on the Use of Navigation Systems

The following navigation systems, although offering an RNAV capability, have limitations for their use in Basic RNAV operations.

4.4.2.1. INS

INS without a function for automatic radio updating of aircraft position and approved in accordance with AC 25-4, when complying with the functional criteria of paragraph 4.2.1, may be used only for a maximum of 2 hours from the last alignment/position update performed on the ground. Consideration may be given to specific INS configurations (e.g. triple mix) where either equipment or aircraft manufacturer's data, justifies extended use from the last on-ground position update.

INS with automatic radio updating of aircraft position, including those systems where manual selection of radio channels is performed in accordance with flight crew procedures, should be approved in accordance with AC 90-45A or equivalent material.

4.4.2.2. <u>LORAN C</u>

N° JAA advisory material currently exists for operational or airworthiness approval of LORAN C system within European airspace. Where LORAN C coverage within European Airspace permits use on certain Basic RNAV routes, AC 20-121A may be adopted as a compliance basis.

4.4.2.3. GPS

The use of GPS to perform Basic RNAV operations is limited to equipment approved to TSO-129 () and which include the minimum system functions specified in paragraph 4.2.1. Integrity should be provided by Receiver Autonomous Integrity Monitoring (RAIM) or an equivalent means within a multi-sensor navigation system. The equipment should be approved in accordance with the JAA TGL N° 3. In addition, GPS stand-alone equipment should include the following functions :

- (a) Pseudorange step detection.
- (b) Health word checking.

These two additional functions are required to be implemented in accordance with FAA TSO-C129a criteria.

Traditional navigation equipment (e.g. VOR, DME and ADF) will need to be installed and be serviceable, so as to provide an alternative means of navigation.

Note: Where GPS stand-alone equipment provides the only RNAV capability installed onboard the aircraft, this equipment, on its own, may be incompatible with a future airspace infrastructure such as Precision RNAV routes, terminal procedures, and where implementation of an augmented satellite navigation system will allow, the decommissioning of traditional ground based radio navigation aids.

5. OPERATIONAL CRITERIA FOR USE OF GPS STAND-ALONE EQUIPMENT

5.1. General Criteria

GPS stand-alone equipment approved in accordance with the guidance provided in this Leaflet, may be used for the purposes of conducting Basic RNAV operations, subject to the operational limitations contained herein. Such equipment should be operated in accordance with procedures acceptable to the Authority. The flight crew should receive appropriate training for use of the GPS stand-alone equipment for the normal and abnormal operating procedures detailed in paragraphs 5.2 and 5.3.

5.2. Normal Procedures

The procedures for the use of navigational equipment on Basic RNAV routes should include the following :

- (a) During the pre-flight planning phase, given a GPS constellation of 23 satellites or less (22 or less for GPS stand-alone equipment that incorporate pressure altitude aiding), the availability of GPS integrity (RAIM) should be confirmed for the intended flight (route and time). This should be obtained from a prediction program either ground-based, or provided as an equipment function (see Annex 1), or from an alternative method that is acceptable to the Authority.
 - Dispatch should not be made in the event of predicted continuous loss of RAIM of more than 5 minutes for any part of the intended flight.
- (b) Where a navigation data base is installed, the data base validity (current AIRAC cycle) should be checked before the flight.
- (c) Traditional navigation equipment (e.g. VOR, DME and ADF) should be selected to available aids so as to allow immediate cross-checking or reversion in the event of loss of GPS navigation capability.

5.3. Abnormal Procedures in the event of loss of GPS navigation capability

The operating procedures should identify the flight crew actions required in the event of the GPS stand-alone equipment indicating a loss of the integrity monitoring detection (RAIM) function or exceedance of integrity alarm limit (erroneous position). The operating procedures should include the following :

- (a) In the event of loss of the RAIM detection function, the GPS stand-alone equipment may continue to be used for navigation. The flight crew should attempt to cross-check the aircraft position, where possible with VOR, DME and NDB information, to confirm an acceptable level of navigation performance. Otherwise, the flight crew should revert to an alternative means of navigation.
- (b) In the event of exceedance of the alarm limit, the flight crew should revert to an alternative means of navigation.

ANNEX 1 GPS Integrity Monitoring (RAIM) Prediction Program

Where a GPS Integrity Monitoring (RAIM) Prediction Program is used as a means of compliance with paragraph 5.2 (a) of this document, it should meet the following criteria:

- The program should provide prediction of availability of the integrity monitoring RAIM function of the GPS equipment, suitable for conducting Basic RNAV operations in designated European airspace.
- 2. The prediction program software should be developed in accordance with at least RTCA DO 178B/EUROCAE 12B, level D guidelines.
- 3. The program should use either a RAIM algorithm identical to that used in the airborne equipment, or an algorithm based on assumptions for RAIM prediction that give a more conservative result.
- 4. The program should calculate RAIM availability based on a satellite mask angle of not less than 5 degrees, except where use of a lower mask angle has been demonstrated to be acceptable to the Authority.
- 5. The program should have the capability to manually designate GPS satellites which have been notified as being out of service for the intended flight.
- 6. The program should allow the user to select:
 - (a) the intended route and declared alternates.
 - (b) the time and duration of the intended flight.